Edgenuity®

Warm-Up

Potential and Kinetic Energy

Lesson Question

Lesson Goa	als					
	Explore the			betwee	en potential	
		energy and k	inetic er	nergy.	<i>)</i>	
Calculate the					Explain how	v energy is
energy in a s	ystem.	Calculate th	e		in a moving	system.
		energy in a s	system.			•

Words to Know

Write the letter of the definition next to the matching word as you work through the lesson. You may use the glossary to help you.

___ system

- A. the energy an object has due to its motion
- transformation
- B. a group of related objects that interact and form a complex whole
- ____ kinetic energy
- C. the stored energy an object has due to its position
- ____ potential energy
- D. a change in form, appearance, nature, or characteristic

Warm-Up

Potential and Kinetic Energy

Energy		
Energy is the ability to do		
Work involves the of energy from one object to another.		
Energy exists in several		
Chemical		
•		
Mechanical		
•		
•		
Kinetic		

Edgenuity®

Instruction

Potential and Kinetic Energy

Slide 2

Potential Energy and Kinetic Energy

- Objects can have more than one form of at the same time.
 - is the energy an object has due its position.
 - is the energy an object has due to its motion.
- The amount of each form of energy depends on the and position of an object.

Total Energy

A is the group of objects that interact with each other.

- The in a system stays the same.
 - If potential energy increases, then kinetic energy
 - If potential energy decreases, then kinetic energy

Instruction

Potential and Kinetic Energy

5

Gravitational Potential EnergyPotential energy is energy.

- Potential energy related to the _____ of an object is known as gravitational potential energy.
 - Gravitational potential energy comes from the presence of
 - The greater the height of an object, the ______ its gravitational potential energy.

The Potential Energy Equation

• Gravitational potential energy is directly related to:

$$PE = mgh$$

- the acceleration due to , g.
- an object's , h.

An Application of the Potential Energy Equation

What is the potential energy of a 150 kg rock resting on top of a hill that is 25 m high?

Gravity on Earth is a constant of m/s/s.

$$PE = (150 \text{ kg})(9.8 \text{ m/s}^2)(25 \text{ m}) =$$

Instruction

Potential and Kinetic Energy

The Potential Energy Equation

When potential energy is known,

can be found.

$$PE = mgh$$

To find mass, rearrange equation: m = PE/gh

To find height, rearrange equation: h = PE/gm

Example: Jeremiah, who has a mass of 60 kg, starts skating down a hill with a potential energy of 1,200 J. What is the height of the hill? Round your answer to the nearest whole number.

Step 1: Identify what is known.

•
$$g = 9.8 \,\text{m/s/s}$$

Step 2: Multiply mass x gravity.

$$60 \text{ kg} \times 9.8 \text{ m/s/s} = \text{kg m/s/s}$$

Step 3: Solve the equation.

$$h = (1,200 \text{ J})/588 \text{ kg m/s/s} =$$

Step 4: Round the answer to the nearest whole number.

$$h = 2.04 \,\mathrm{m} =$$
 m

Edgenuity®

Instruction

Potential and Kinetic Energy

Kinetic Energy

Kinetic energy:

- is the energy of
- · depends on the mass and velocity of an object.
 - Increases when increases
 - Increases when increases

The Kinetic Energy Equation

Kinetic energy is directly related to an object's mass, m, times
an object's velocity, v,

$$KE = \frac{1}{2}mv^2$$

Mass (m) is measured in

Velocity squared (v²) is measured in

Multiplied together give us , J.

Instruction

Potential and Kinetic Energy

An Application of the Kinetic Energy Equation

Example: What is the kinetic energy of a 55 kg girl walking at a velocity of 2 m/s?

Step 1: Identify what is known.

•
$$v = w m/s$$

Step 2: Find half of 55 kg.

$$55 \text{ kg/2} = \text{kg}$$

Step 3: Square the velocity

$$\boxed{\qquad m/s \times \boxed{\qquad m/s = \boxed{\qquad m^2/s^2}}$$

Step 4: Solve the equation.

$$KE = 27.5 \text{ kg} \times 4 \text{ m}^2/\text{s}^2 =$$

Imagine that the girl's velocity increases to 4 m/s. Her kinetic energy increases

to .

Instruction

Potential and Kinetic Energy

Potential and Kinetic Energy Transformations

- PE and KE goes through , or changes
 - Top of the hill = all energy
 - Downhill = potential becomes
 - On the ground = kinetic energy
 - Uphill = kinetic becomes

Summary

Potential and Kinetic Energy

?	
Y	

Lesson Question

What is the relationship between potential and kinetic energy?

Answer

Slide 2

Review: Key Concepts

- Gravitational potential energy as an object gets closer to the ground.
- At the same time, kinetic energy increases because the object is up.

Term	Definition	Affected by	Equation	
Kinetic	Energy of		KE =	
Potential	Energy due to		PE =	

Summary

Potential and Kinetic Energy

Use this space to write any questions or thoughts about this lesson.